Nonparametric Mixture Models for Supervised Image Parcellation.

نویسندگان

  • Mert R Sabuncu
  • B T Thomas Yeo
  • Koen Van Leemput
  • Bruce Fischl
  • Polina Golland
چکیده

We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various settings of a model parameter yield algorithms that use image intensity information differently in determining the weight of a training subject during fusion. One particular setting computes a single, global weight per training subject, whereas another setting uses locally varying weights when fusing the training data. The proposed nonparametric parcellation approach capitalizes on recently developed fast and robust pairwise image alignment tools. The use of multiple registrations allows the algorithm to be robust to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with expert manual labels for the white matter, cerebral cortex, ventricles and subcortical structures. The results demonstrate that the proposed nonparametric segmentation framework yields significantly better segmentation than state-of-the-art algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Nonparametric Image Parcellation

Segmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SN...

متن کامل

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

Topics Over Nonparametric Time: A Supervised Topic Model Using Bayesian Nonparametric Density Estimation

We propose a new supervised topic model that uses a nonparametric density estimator to model the distribution of real-valued metadata given a topic. The model is similar to Topics Over Time, but replaces the beta distributions used in that model with a Dirichlet process mixture of normals. The use of a nonparametric density estimator allows for the fitting of a greater class of metadata densiti...

متن کامل

Semi-supervised statistical region refinement for color image segmentation

Some authors have recently devised adaptations of spectral grouping algorithms to integrate prior knowledge, as constrained eigenvalues problems. In this paper, we improve and adapt a recent statistical region merging approach to this task, as a nonparametric mixture model estimation problem. The approach appears to be attractive both for its theoretical benefits and its experimental results, a...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 12 WS  شماره 

صفحات  -

تاریخ انتشار 2009